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Abstract

In the literature, a macroscopic two-equation turbulence model is proposed for analyzing turbulent flows through porous media of
particular morphologies (arrays of square or circular rods, packed spheres). This model has been adapted to longitudinal flows in
channels, pipes and rod bundles, in order to be able to analyze turbulent flows within nuclear power reactor circuits and core using a
macroscopic turbulence model. The additional source terms of the macroscopic k–� equations, which appear as an output of the
volume-averaging process, are modeled using the kinetic energy balance and physical considerations. The two unknown constants of
the closure expression are determined from the spatial averaging of microscopic k–� computations and from numerical and experimental
results available in the literature. This present model has been first successfully evaluated in various simple geometries such as channel
and pipe. Good agreement was also obtained between this present model and an experiment of decreasing turbulence inside a rod bundle.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the core of a nuclear power reactor, complex thermo-
hydraulic phenomena occur and a detailed description of
the flow may be required. Time-dependent, high resolution
simulations based on Large Eddy Simulation (LES) or on
Reynolds Averaged Navier–Stokes (RANS) models are
able to give the desired detailed flow field prediction. How-
ever, the exorbitant run time associated with such simula-
tions and the actual limit of the calculators restrict their
use to a limited region of the system. Furthermore, these
simulations depend on the state of the flow in the remain-
ing part of the system. This requires either an artificial iso-
lation of the interesting region, or, preferably a coupling
between the high resolution description on that region
and another description of the remaining part of the system
based on a less detailed, cheaper resolution. Macroscopic
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descriptions such as those developed in the porous media
framework, could fulfill this need for a coarse resolution.
Indeed, with a porous media formulation, all the complex
geometry of the core reactor would not be described,
reducing the cost of the computation, but the overall effect
of the solid would be taken into account in the model.
Therefore, a porous media formulation seems well adapted
to the development of a turbulence model dedicated to
charged medium such as those encountered in the core of
a nuclear reactor. However, in order to be able to later
consider the coupling between the different levels of
description, the macroscopic turbulent model has to be
consistent with microscopic turbulent models, and thus to
be properly derived.

In the study of flow through porous media, the first
works were mainly based on semi-empirical laws [8]. It is
only recently that general equations for flows through por-
ous media were formally derived using the volume-averag-
ing technique [33]. Lage [21] gives a very interesting and
comprehensive review of this history of the modeling of
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Nomenclature

c1, c2, Cl turbulence model constants
Cf friction coefficient
cp, yþlim macroscopic turbulence model constants
Dh hydraulic diameter
k turbulent kinetic energy
K permeability
p pressure
ReH Reynolds number
Sw wall friction surface
ui velocity

Special symbols

hwi volume average
hwif intrinsic average

w ensemble mean
w 0 fluctuation
dw deviation from intrinsic average

Greek symbols

/ porosity
� dissipation rate of turbulent kinetic energy
m kinematic viscosity
mt turbulent viscosity
mt/ macroscopic turbulent viscosity
q fluid density
~rk; ~r� macroscopic Prandtl numbers
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flow through porous media starting from the work of
Darcy. The volume-averaging technique is a rigorous
mathematical procedure used to derive the governing mass,
momentum and energy equations in porous media [3,34].
Different authors use this formalism to derive macroscopic
turbulence models. For instance, Masuoka and Takatsu
[23] derive a 0-equation turbulence model using the local
volume-averaging technique. They model the effective eddy
diffusivity as the algebraic sum of the eddy diffusivities esti-
mated from two types of vortices: the pseudo vortex and
the interstitial vortex. Studying also turbulent flow and
heat transfer through stacked spheres, Alvarez et al. [1]
propose a 1-equation turbulence model.

Two-equation macroscopic turbulence models are also
proposed in the literature. Antohe and Lage [2] derive a
two-equation macroscopic turbulence model applying the
time averaging operator to the extended Darcy–Forchhei-
mer model. Getachew et al. [13] extend this work by tak-
ing into account higher order terms. Following another
approach, Nakayama and Kuwahara [25] propose a
two-equation macroscopic turbulence model obtained by
spatially averaging the Reynolds-averaged Navier–Stokes
equations. However, for turbulent flows, the order of appli-
cation of the two operators (time-averaging for turbulence
and volume averaging) is important. Pedras and de Lemos
[27] show that the two approaches lead to similar equations
for the mean flow, but that the turbulence kinetic energies
resulting from the two different approaches are different. In
particular, they show that, applying first the time-averaging
operator, allows to take into account the turbulence inside
the pores. Thus, the latter approach will be used in our
study.

Applying the volume-averaging theory to the micro-
scopic transport equations of turbulent kinetic energy
and its dissipation rate, Nakayama and Kuwahara [25],
and Pedras and de Lemos [28], establish a macroscopic
two-equation turbulence model. They obtain a new set of
equations for the transport of the volumetric averaged tur-
bulence kinetic energy and its dissipation rate. These new
equations involve additional terms which quantify the
influence of the medium morphology on the turbulent
kinetic energy and dissipation level. The main difficulty
of the approach is to propose a closure for these additional
terms and unfortunately there is no general well-developed
closure expression valid for any kind of porous media mor-
phology for these additional terms. Nakayama and Kuwa-
hara [25], and Pedras and de Lemos [28] propose different
models for these additional terms. The important point is
that the correlations, or the constant of their models are
obtained by integrating microscopic results obtained from
numerical experiments over a unit porous structure. Differ-
ent unit porous structures have been already considered:
regular morphology made of square [25], circular [30] or
elliptic [29] rods. This method of integrating microscopic
results obtained from numerical experiments over a unit
porous structure has also been used with success by Kuwa-
hara et al. [19,20] and Nakayama et al. [26] to study ther-
mal dispersion and interfacial heat transfer coefficient in
porous media.

We are interested in modeling the core of nuclear power
reactors using the porous media approach. The different
nuclear cores that are under study are characterized by
elongated geometries, and by a large number of identical
elements. As can be seen in Fig. 1, which shows examples
of gas cooled reactors, we can have to compute the turbu-
lent flows around more than thousands of needles, and we
are interested by different geometries: channels, tubes and
needles. Furthermore, in the core of the reactor, the flow
is longitudinal whereas in the studies by Nakayama and
Kuwahara [18,25], and Pedras and de Lemos [28–30] only
transverse flows were considered. Chung et al. [6] have
already studied a porous media made of channels. How-
ever, their work is based on the model of Antohe and Lage
[2]. As mentioned previously, this model does not allow to
take into account the turbulent kinetic energy inside the
interstices, while we are precisely interested in knowing
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Fig. 1. Example of geometries under study for the core of a nuclear reactor.

M. Chandesris et al. / International Journal of Heat and Mass Transfer 49 (2006) 2739–2750 2741
the level of turbulence inside the channels. Thus, our pur-
pose is twofold. First, to study the additional source terms
for longitudinal flows through various geometries, using
the approach proposed by Nakayama and Kuwahara
[25]. Second, to take advantage of the simplicity of the
studied geometries to establish the closure expressions
not only by solving the microscopic flow inside periodic ele-
mentary cells, as was done for transverse flows, but also by
using physical considerations.

The first part of this paper will focus on the mathemat-
ical formalism of the volume-averaging theory. Then the
macroscopic equations of mass, momentum, turbulent
kinetic energy and its dissipation rate obtained by applying
the time-averaging operator prior to the volume-averaging
operator are presented. In the second part, closure expres-
sions for the additional source terms appearing in the mac-
roscopic k–� transport equations are obtained based on
physical considerations. These closure expressions are ded-
icated to longitudinal flows through elongated geometries.
The unknown constants of this model are established in the
third part using numerical and experimental results.
Finally, the macroscopic turbulence model is evaluated
for unidirectional turbulent flows using two sets of data
of decreasing turbulence, one numerical and the other
experimental.
2. Macroscopic governing equations

2.1. The volume-averaging method for flow in porous media

The main idea of the volume-averaging theory is to
apply a volume-averaging operator over a representative
elementary volume (REV) to the set of equations governing
the considered problem at the microscopic scale (mass,
momentum, scalar transport, etc.) in order to obtain a set
of equations at the macroscopic level. The choice of the size
of the REV is important. The size of the REV should be
sufficiently small in order to preserve as much information
of the unfiltered flow field as possible in the volume-aver-
aged flow field. On the other hand, the size of the REV
should be such that hhwii � hwi, i.e. the volume-averaged
flow field should present negligible variations on scales
smaller than the filter length. This restriction is important,
because it implies that the scale of variation of the averaged
flow field is larger than the size of the REV, and gives sense
to the use of the volume-averaging operator. Additional
terms appear due to this averaging process and the main
difficulty of the approach is to propose a closure model
for these additional terms.

In the study of multiphase transport phenomena, two
types of volume averages are commonly introduced [35].
The first one is the phase average (or volumetric average)
which is defined by

hwi ¼ 1

V

Z
V

vwdV ¼ 1

V

Z
V f

wdV ð1Þ

for any physical variable w, where Vf represents the volume
of the fluid phase contained within the averaging volume V

and v is the phase indicator function:

v ¼
1 in the fluid phase

0 in the solid phase

�
ð2Þ

However, hwi is not equal to w when the latter is a
constant. Therefore a second average, the intrinsic phase

average, is defined by:

hwif ¼
1

V f

Z
V f

wdV ð3Þ

which is more representative of the condition in the fluid
phase. These two averages are related through the porosity
/ by

hwi ¼ /hwif ; / ¼ V f

V
ð4Þ

Using this formalism, and neglecting the classical spatial
commutation error, it is possible to derive the relations
between the volumetric intrinsic average of derivatives
and the derivatives of volumetric intrinsic average. These
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relations are presented in different works [32,34] and are
known as theorems of local volumetric average. For the
case of a fixed solid, they can be written as

ow
oxi

� �
f

¼ 1

/
o

oxi
ð/hwifÞ þ

1

V f

Z
R

wni dR ð5Þ

ow
ot

� �
f

¼ o

ot
hwif ð6Þ

where R is the interface between the fluid and the solids,
while ni is i-th component of the unit normal vector ori-
ented outward from the fluid.

2.2. Macroscopic continuity and momentum equations

Applying the phase average operator to the microscopic
Reynolds averaged equations, and using the fact that veloc-
ity fluctuations vanish at the fluid-solid interface R, the
following result is obtained:

o/h�uiif
oxi

¼ 0

/
oh�uiif

ot
þ o

oxj
ð/h�uiifh�ujifÞ

¼ � 1

q
o

oxi
ð/hpifÞ þ

o

oxj
m

o/h�uiif
oxj

þ o/h�ujif
oxi

� �� �

� o

oxj
ð/hd�uid�ujifÞ þ R� o

oxj
ð/hu0iu0jifÞ ð7Þ

where

R ¼ 1

V

Z
R

m
o�ui

oxj
þ o�uj

oxi

� �
� p

q
dij

� �
� nj dR ð8Þ

represents the volume average of the surface drag force due
to the presence of solids. dw denotes the deviation of w
from its intrinsic average hwif such that

dw ¼ w� hwif ð9Þ
The closure of this system is realized through the mod-

eling of the last three unknown terms appearing in (7).
The first term can be interpreted as an inertial dispersion
term and the second one as a surface drag term. The iner-
tial effects become appreciable only for high speed flow and
cause an increase in the form drag. Furthermore, these two
terms have the same effect. They generate a pressure drop
through frictional drag. Since, for steady, macroscopically
uniform flow, Eq. (7) should reduce to the semi-empirical
well-known Darcy–Forchheimer law which relates the
pressure drop to the flow velocity and the square of the
flow velocity, Vafai and Tien [33] modeled this two terms
together using the Forchheimer-extended Darcy’s law.
For simple and well-known geometries (plane, pipe or
rod bundle flows), considering longitudinal flows, the pres-
sure drop due to friction is known through wall friction
pressure loss correlations [9,16]. Therefore, these two terms
are modeled together through a friction force F.
The last term, the macroscopic Reynolds stress tensor, is
modeled following an idea proposed by Pedras and de
Lemos [28]. They introduce a macroscopic turbulent vis-
cosity mt/ which verify

mt/hsiji ¼ hmtsiji ð10Þ

where

sij ¼
1

2

o�ui

oxj
þ o�uj

oxi

� �
ð11Þ

Since �u vanishes at the wall surface, it comes

hsiji ¼
1

2

o/h�uiif
oxj

þ o/h�ujif
oxi

� �
ð12Þ

and the macroscopic Reynolds stress tensor is given by

�/hu0iu0jif ¼ 2/hmtsijif �
2

3
/hkifdij ¼ 2mt/hsiji �

2

3
/hkifdij

ð13Þ
Thus, the macroscopic momentum equation can be written
as follow:

/
oh�uiif

ot
þ o

oxj
ð/h�uiifh�ujifÞ

¼ � 1

q
o

oxi
/hpif þ

2

3
/qhkif

� �

þ o

oxj
ðmþ mt/Þ

o/h�uiif
oxj

þ o/h�ujif
oxi

� �� �
þ /F i ð14Þ

A method has to be proposed to compute mt/ . Both Nakay-
ama and Kuwahara [25], and Pedras and de Lemos [28] use
the expression

mt/ ¼ Cl
hki2f
h�if

ð15Þ

which is a very simple expression inspired by the modeling
at the microscopic scale. This choice will be discussed later.

2.3. Macroscopic transport equations for k and �

In their work, Nakayama and Kuwahara [25] obtained
the macroscopic transport equations for hkif and h�if by
applying the intrinsic average operator to the classical
two equations k–� turbulent model using the modeling con-
stants recommended by Launder and Spalding [22].
Another approach was followed by Pedras and de Lemos
[28], who worked on the transport equations for k and �
without introducing a priori any microscopic turbulence
model. Comparing their results, one can see that their mac-
roscopic transport equations for hkif and h�if are very sim-
ilar, except for the modeling of the additional source terms
and considering that the turbulent viscosity of Nakayama
and Kuwahara’s model is a macroscopic turbulent viscos-
ity. Noting Pk and S� the additional source terms, the set
of transport equations for hkif and h�if is



Table 1
Source terms for the macroscopic turbulence models

Sk S�

Nakayama and
Kuwahara [25]

�1 c2
�2
1

k1
�1 ¼ 39/2ð1� /Þ5=2 h�ui3f

D

k1 ¼ 3:7ð1� /Þ/3=2h�ui2f
Pedras and de

Lemos [28]
ck
hkif h�uiffiffiffi

K
p c2ck

h�if h�uiffiffiffi
K
p K ¼ /3D2

144ð1�/Þ2

ck = 0.28

Fig. 2. REV for the array of needles.
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¼ 2/mt/hsijifhsijif
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oxj
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mt/
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� �
o/hkif

oxj
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� /h�if þ /P k ð16Þ

/
oh�if
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ð/h�ujifh�ifÞ
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oxj
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� �
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þ /ð2c1mt/hsijifhsijif � c2h�ifÞ
h�if
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þ /S� ð17Þ

where (c1,c2) are the two constants of the microscopic k–�
model, and ð ~rk; ~r�Þ are macroscopic turbulent Prandtl
numbers. These macroscopic turbulence model equations
present two extra source terms Pk and S� which represent
‘internal’ production of turbulence kinetic energy and its
dissipation rate due to the presence of solids and for which
a closure model has to be proposed. The turbulence source
terms models of Nakayama and Kuwahara [25] and Pedras
and de Lemos [28] are summarized in Table 1.

3. The closure problem

To close the model, the easiest way is to consider the
equilibrium for which it is possible to evaluate the
unknown source terms (Eqs. (16) and (17)) and to deduce
correlations. Here, the flow is said to be at equilibrium
when the flow is steady and spatially uniform from the
macroscopic point of view (Dhkif/Dt = Dh�if/Dt = 0), and
when the turbulence is fully developed. However, it does
not give the expression of the unknown source terms out
of equilibrium. Then, two different ways can be followed:

• The general expression proposed to model the unknown
source terms has to reduce to an expression at least valid
at equilibrium. This is the point of view adopted by
Pedras and de Lemos [28]. According to them, the extra
source terms are linked to the current level of turbulence
of the considered flow (see Table 1).

• The correlations obtained at equilibrium are valid out of
equilibrium without generalizing their expressions. This
is the point of view adopted by Nakayama and Kuwa-
hara [25].
The second point of view was chosen because we have
more physical arguments to explain the expression of the
production terms at equilibrium, and they are unfortu-
nately not directly transposable out of equilibrium.

3.1. Theoretical approach for longitudinal flows

The two internal source terms directly depend on the
medium morphology. One can easily imagine that the tur-
bulent kinetic energy production of a porous medium made
of spheres is not the same as the one for straight parallel
channels or pipes. This is why we do not use the closure
expressions currently available. They are designed for
transverse flows in array of square (or circular) rods, or
packing of spheres and we are interested in longitudinal
flows in geometries made of channels, pipes or needles as
illustrated in Fig. 1.

3.1.1. Production of turbulent kinetic energy: Pk

For fully developed, uniform, uni-dimensional flows Eq.
(16) reduces to

P k ¼ h�if ¼ �1 ð18Þ
�1 being the value reached by h�if at equilibrium. As ex-
pected, the ‘internal’ production of turbulent kinetic energy
Pk is balanced by the dissipation since the flow is at equi-
librium and since there is no macroscopic production of
turbulence. The internal production term Pk is evaluated
writing the total kinetic energy balance. For fully devel-
oped, uniform, uni-dimensional flows, all the kinetic energy
lost by the mean flow turns partly into heat (direct viscous
dissipation), partly into turbulence through the production
term that has to be evaluated

� 1

q
op
oxj

�uj ¼ m
o�ui

oxj

� �2

� u0iu
0
j
o�ui

oxj
ð19Þ

The kinetic energy balance is integrated over a control vol-
ume. For arrays of channels (or pipes), the REV includes
the section of one channel (or one pipe). For the needles,
the REV consist of one elementary cell as depicted in
Fig. 2. The relation between the pressure gradient and
the friction force is used to obtain
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1

q
F jh�ujif ¼

m
V f

Z
V f

o�ui

oxj

� �2

dV � u0iu
0
j
o�ui

oxj

� �
f|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

P k

ð20Þ

where the friction force F is nonzero only in the mean flow
direction, and can be related to the macroscopic velocity
through a friction coefficient Cf

F ¼ 1

2
qh�ui2f

4Cf

Dh

ð21Þ

Dh is the hydraulic diameter and can be defined for longi-
tudinal flows by

Dh ¼ 4
V f

Sw

ð22Þ

where Sw is the wall friction surface. Since most of the vis-
cous dissipation occurs very close to the wall for longitudi-
nal flows, i.e. where mean velocity gradients are very
important, the kinetic energy transferred to heat is esti-
mated by integrating the expression for the dissipation only
in the viscous region. The mean velocity profile is known in
this region and is given by the linear law U+ = y+. U+

stands for the velocity reduced by us, us being the friction
velocity, and y+ is the normal coordinate expressed in wall
units. Since the thickness of the viscous layer is very small
at high Reynolds number compared to the other dimension
of the integration domain, the volume of the viscous region
is well estimated by taking the product of the thickness of
the viscous layer by the wall friction surface. It comes

m
V f

Z
V f

o�ui

oxj

� �2

dV � m
V f

Sw

Z m
us

yþ
lim

0

u4
s

m2
dy � 4

Dh

yþlimu3
s ð23Þ

This expression is valid for longitudinal geometries with a
constant section. yþlim corresponds to the limit of the inte-
gration zone expressed in wall units. Its value should be
equal to the thickness of the viscous region. This limit is
located somewhere in the buffer layer ð5 6 yþlim 6 30Þ. The
overestimation of the dissipation in the buffer layer, due
to the use of the linear law, should be approximately
compensated by the fact that the dissipation is neglected
beyond the limit given by yþlim. For fully developed
longitudinal flows, the friction velocity is related to the
macroscopic velocity through the friction coefficient Cf:

us ¼
ffiffiffiffiffi
Cf

2

r
h�uif ð24Þ

Finally, using Eqs. (20), (21), (23) and (24), the following
model is obtained for Pk

P k ¼ 2Cf

h�ui3f
Dh

1� yþlim

ffiffiffiffiffi
Cf

2

r !
ð25Þ

The production of turbulent kinetic energy is directly
linked to the power of the friction forces on the walls.
However, this power is corrected by the direct dissipation
of kinetic energy into heat, term that is often neglected in
the literature. The geometry is taken into account only
through the friction coefficient Cf.

3.1.2. Production of dissipation: S�
The equation for h�if (17) does not contain any explicit

production term of dissipation (except for the macroscopic
production term of dissipation (2c1mt/hsijifhsijifh�if=hkif )
which is zero for macroscopic uniform flows with zero
mean shear), whereas it should. Thus S� has to represent
at least a production term of dissipation. However, it does
not mean that this term represents only production. But,
since no information on other phenomena is available,
the assumption is made that S� represents only the net pro-
duction of dissipation inside the integration domain.

To model this production of dissipation, we go back to
the ideas used to derived the standard k–� model. The pro-
duction of dissipation should be proportional to the kinetic
energy production. This idea comes from the fact that the
dissipation rate is also the spectral flux of energy (cascade
from the largest to the smallest eddies), and depends on
the energy contained in the largest scales, which is directly
linked to the production of kinetic energy. The production
of dissipation should involve a production time scale.
Indeed, the original dissipation equation for homogeneous
flow is classically interpreted as a time scale balance:

1

�

d�

dt
¼ c1

P
k
� c2

�

k
ð26Þ

1

s�
� 1

sp

� 1

sk
ð27Þ

The time scale of dissipation s� is balanced by the produc-
tion time scale sp and the decay time scale sk. Finally, the
source term has to be coherent with the equilibrium state.
The simplest solution that verifies these three conditions is

S� ¼ c2

P k

sp

ð28Þ

Several time scales can be proposed for sp:

1. The decay time scale:

sp ¼
hkif
h�if

ð29Þ

It leads to an expression similar to the traditional form of
the k–� model. However, this solution constrains too much
the system, and does not allow to separate the effects of
production and destruction.
2. A production time scale:

sp ¼
hkif
P k

ð30Þ

This time scale was introduced by Chen and Kim [5] in the
dissipation equation of the k–� model in order to improve
the standard model. This is this time scale that Nakayama
and Kuwahara [25] have indirectly chosen, with the value
of hkif at equilibrium (noted k1).
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We chose to use this time scale (30) since Nakayama and
Kuwahara obtained good results for their geometries. It
comes

S� ¼ c2

P 2
k

k1
ð31Þ

A model has been already proposed for Pk (Eq. (25)).
However, a model has to be proposed for k1. Further-
more, this small development shows how to propose a
model for the production of dissipation and can be used
to propose models where other phenomena have to be
taken into account (singularities due to spacer grids, two-
phase flows, etc.).

For fully developed, uniform, uni-dimensional flows,
using Eq. (31), the transport equation of dissipation (17)
reduces to

hkif ¼ k1 ð32Þ
k1 is evaluated using the classical local relation for fully
developed turbulence:

� ¼ k3=2

L
ð33Þ

where L is a characteristic turbulence length scale. This
relation, often used at the microscopic level, is not directly
transposable to the macroscopic level since the average of a
product is not equal to the product of the averages. How-
ever, we make the hypothesis that this relation still holds at
the macroscopic level using the ad hoc length scale which
naturally appears in Eq. (25):

�1 ¼
k3=2
1

LM
; LM /

Dh

1� yþlim

ffiffiffiffi
Cf

2

q ð34Þ

Using relations (18), (25) and (34), it comes

k1 ¼ ch�ui2f C2=3
f ð35Þ

This relation gives an estimation of the average level of tur-
bulent kinetic energy when the turbulence is developed,
knowing the bulk velocity and the friction coefficient.
Using the Reynolds dependency at the power �1/4 of the
friction coefficient for pipe and channel flows [9,16] this
relation can also be written in the following form:

k1 ¼ cph�ui2f Re�1=6
H ð36Þ

where ReH is the Reynolds number based on the hydraulic
diameter and the bulk velocity, cp is a constant that has to
be evaluated. We could also evaluate the constant c. How-
ever it is equivalent since for most geometries empirical
relations link the friction coefficient and the Reynolds
number.

4. Determination of the model constants

Two constants remain unknown in our model: cp and
yþlim. They are established by integrating microscopic results
obtained from experiments and numerical computations
for fully developed, uniform pipe and channel flows, i.e.
when relations (18) and (32) hold. Having the microscopic
turbulence fields, the intrinsic volume averaged values are
obtained by integrating the microscopic turbulent quanti-
ties over the fluid phase in a section of the pipe or channel
(the turbulent quantities do not depend on the mean flow
direction).

4.1. Numerical procedure

All the computations of that study are carried out using
the TRIO_U code [4] developed at CEA (French Atomic
Agency). This object oriented software is dedicated to the
simulation of thermal-hydraulics problems encountered in
the nuclear industry. It is able to deal with both LES and
RANS models. The numerical model is based on a finite
volume method which can be applied either to structured
or unstructured grids. The discrete form of the equations
is solved using a matrix projection scheme which is a sequel
of the SOLA method originally developed by Hirt [15]
(more details about this projection method can be found
in Ref. [11]). In our study, calculations were carried out
on a structured and staggered Cartesian grid: scalar quan-
tities are estimated at the center of cells and velocity com-
ponents at the center of cell faces. Time integration and
spatial discretization schemes were common to all compu-
tations. Time advancement was ensured by a 3rd order
Runge–Kutta explicit scheme. We used a centered scheme
for convection and diffusion terms in the momentum equa-
tion, and an upwind scheme for the convection in the trans-
port equations of k and �.

The microscopic calculation domain considered here, is
either one channel or one pipe. For the channel, the model
reduces to a two-dimensional model, since the considered
quantities do not depend on the spanwise direction. For
the pipe, the microscopic set of governing equations
reduces to a two-dimensional axisymmetric problem, using
the axial symmetry around the cylinder’s axis. On the solid
walls, wall functions are applied in order to avoid the cost
of a mesh refinement. The first computational node is
located in the logarithmic zone (y+ > 30) of the velocity
profile where

Uþ ¼ 1

j
lnðyþÞ þ A ð37Þ

j is the Von Karman constant (j = 0.415) and A is another
constant equal to 5.32 in our study. Furthermore, in the
logarithmic region, the equilibrium assumption between
production and dissipation leads to the following estima-
tions for k and �:

k ¼ u2
sffiffiffiffiffiffi
Cl

p ; � ¼ u3
s

jy
ð38Þ

These relations are used to compute the values of k and � at
the first node. In order to obtain fully developed, uniform
flows, periodic conditions are applied at the ongoing-out-
going boundaries. Calculations are carried out for a wide
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range of Reynolds number ReH: [2, 5 Æ 104 � 5.105] for the
channel, [5 Æ 104 � 106] for the pipe. For each computation,
the grid size in the normal direction is chosen such that the
first velocity node is at a distance y+ = 40 from the wall, so
that the use of the wall function is valid. The largest mesh is
obtained for the largest ReH: 100 · 440 nodes. It has been
verified that the results were grid-independent, and that
the microscopic pressure gradients obtained, agreed well
with the existing correlations for channel and pipe flows.

4.2. Results from microscopic model

For the channel, the results obtained from the DNS of
Moser et al. [24], the experimental results obtained by
Comte-Bellot [7] and our own numerical results obtained
with the standard k–� model are integrated over the chan-
nel section to obtain the values of k1 and �1 = Pk. Then cp

and yþlim can be computed:

cp ¼
k1
h�ui2f

Re1=6
H ; yþlim ¼ 1� P kDh

2Cfh�ui3f

 ! ffiffiffiffiffi
2

Cf

s
ð39Þ

The results are presented in Fig. 3. We could not compute
the values of yþlim of Comte-Bellot’s experiment, since we
only had access to the turbulent kinetic energy, and not
to its dissipation rate.

For the pipe, the results of the DNS of Eggels et al. [10],
the experimental results of Perry et al. [31] and also our
own numerical results obtained with the standard k–�
model are integrated. The results for cp and yþlim are pre-
sented in Fig. 4. Here again, we cannot present the values
of yþlim for the DNS and the experiment, since the results
for the dissipation rate are not available.

Fig. 3(a) and Fig. 4(a) show that the value of cp does not
depend on the Reynolds number for both geometries. This
result imply that k1 does depend on the Reynolds number,
which is a result different from the one obtain by Nakay-
ama et al. (see Table 1). This can be explained by the fact
that the studied topologies are of very different kind. Con-
trary to longitudinal flows in channels or pipes, transverse
flows in array of rods present form drag. These figures also
show a dependency of cp on the geometry. Fig. 3(b) and
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Fig. 3. Effect of Reynolds number on the two constants for the c
Fig. 4(b) show that the values of yþlim do not depend too
much on the Reynolds number, even though we observe
that yþlim decrease slightly with ReH. Furthermore, as pre-
dicted in Section 3, yþlim belongs to the buffer layer. These
figures comfort the validity of our theoretical developments
and suggest the following values for the two constants:

channel : cp ¼ 0:0306; yþlim ¼ 8 ð40Þ
pipe : cp ¼ 0:0367; yþlim ¼ 7 ð41Þ

One could argue that the dependency of cp on the geome-
try, even for very similar geometries is a failure of the mod-
el. However, the aim was to understand the form of the
correlations, result that was achieved and we recall that
even the correlations for pressure head loss are different
for pipes and channels:

channel : k ¼ 0:292Re�1=4 ðDean correlationÞ ð42Þ
pipe : k ¼ 0:3164Re�1=4 ðBlasius correlationÞ ð43Þ

These results, obtained in channels and pipes, are also
compared with results obtained by Pedras et al. [28] for
arrays of circular rods. To draw a comparison, we compute
their constant ck which only depends on the state of the
flow when it is uniform and fully-developed, and is given
in their geometry by

ck ¼
�1

ffiffiffiffi
K
p

k1h�ui
ð44Þ

where K is the permeability of the porous media. ck is the
ratio between two time scales: a convective time scale
(Tc) associated to the porous media,

ffiffiffiffi
K
p

=h�ui and the turbu-
lent time scale (Tt) associated to the internal production of
turbulent kinetic energy introduced in Section 2.3: k1/Pk

(= k1/�1 at equilibrium). For one channel (or one pipe)
the permeability is obtained from the head loss for laminar
flows: K ¼ D2

h=48 for the channel (respectively K ¼ D2
h=32

for the pipe). For arrays of channels or pipes the perme-
ability depends on the porosity: K ¼ /D2

h=48 for channels
(respectively K ¼ /D2

h=32 for pipes). The length given byffiffiffiffi
K
p

behave as
ffiffiffiffi
/
p

Dh. With the same interstice length
(Dh), you can have different permeabilities.

ffiffiffiffi
K
p

is not any
more the most appropriate length scale to describe the
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Table 2
Expression and range of values of ck for different geometries

Geometry Analytical
expression

Range
of values

Arrays of circular rods [28] 0.28 0.28
Arrays of square rods [25] 0:878/

ffiffiffiffiffiffiffiffiffiffiffiffi
1� /
p

[0.16–0.34]

Channel and pipe (present results)
C1=3

f

2cp
1� yþlim

ffiffiffiffi
Cf

2

q	 

[0.22–0.34]
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Fig. 4. Effect of Reynolds number on the two constants for the pipe: (a) determination of cp and (b) determination of yþlim.
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length of the pores, as it was for transverse flows. Thus, for
longitudinal flows, ck is redefined using the hydraulic diam-
eter, which is a more appropriate length scale to describe
the length of the interstices

ck ¼
�1Dh

k1h�uif4
ð45Þ

As can be seen in Fig. 5(a), the order of magnitude for ck is
the same as the one found by Pedras et al. [28]. However,
for our geometries, ck shows a slight dependence on the
Reynolds number and on the geometry. This dependence
is also seen when computing ck using relations (25) and (35)

ck ¼
C1=3

f

2cp
1� yþlim

ffiffiffiffiffi
Cf

2

r !
ð46Þ

Since Cf is a function of the Reynolds number, we recover
the dependency of ck on the Reynolds number. The con-
stant ck is also computed based on the correlations ob-
tained by Nakayama et al. [25] for arrays of square rods

ck ¼ 0:878/
ffiffiffiffiffiffiffiffiffiffiffiffi
1� /

p
ð47Þ

Fig. 5(b) shows the comparison. The order of magnitude
for the values of ck is still the same. However, the values
of ck obtained by Nakayama et al. do depend on the
porosity.
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Fig. 5. Comparison for ck: (a) ck versus
The order of magnitude of ck is the same for these four
different geometries (pipe, channel, arrays of square and
circular rods). Indeed, at equilibrium, the ratio of the con-
vective time scale to turbulent time scale is situated in a
narrow range of values: [0.16–0.34] (see Table 2). An inter-
pretation could be:

Assuming the validity, at first order, of the equilibrium
relation between averaged turbulent quantities:

�1 �
k3=2
1
l

ð48Þ

l being the energy carrying eddies length scale, ck can be
expressed as follow:

ck ¼
T c

T t

�
ffiffiffiffi
K
p

h�ui

ffiffiffiffiffiffi
k1
p

l
ð49Þ
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Admitting that the energy carrying eddies length scale is
limited by the characteristic porous length scale
ð
ffiffiffiffi
K
p
� lÞ, it comes

ck �
ffiffiffiffiffiffi
k1
p

h�ui � I ð50Þ

I being the turbulent intensity. Thus, the average of the
turbulent intensity over a porous unit structure shows a
very little dependence on the topology of the porous media.
This result can be observed thanks to the use of the intrin-
sic average operator.

In spite of this result, we do not use the correlations pro-
posed by Pedras and de Lemos [28] for different reasons.
First, even if the order of magnitude of ck is constant, ck

does vary for our geometries and we are interested in com-
puting as accurately as possible the mean level of turbulent
kinetic energy. Secondly, the closure expressions proposed
by Pedras and de Lemos [28] are directly linked to turbu-
lent quantities (see Table 1). This choice leads to an over-
estimation of the dissipation of turbulent kinetic energy
as can be seen on their figure 5 [28]. Furthermore, Guo
et al. [14] also find out that the model proposed by Nakay-
ama and Kuwahara [25] is the best in predicting a reason-
able eddy diffusivity for gas flow in a packed bed. However,
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Fig. 6. Relative importance of the direct dissipation term.
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Fig. 7. Decay of turbulence: (a) turbulent kinetic energy
we acknowledge that a strong hypothesis is done when con-
sidering that the extra source terms are only linked to the
state of the flow when it is at equilibrium.

When solving the closure problem, we showed that the
production of turbulent kinetic energy is directly linked
to the power of the friction forces corrected by the direct
dissipation of kinetic energy into heat. Since this last term
is often neglected in the literature, we present in Fig. 6 the
percentage of the energy which is directly dissipated g, and
which is given by

g ¼ 1� P k

2Cf
h�ui3f
Dh

ð51Þ

As can be seen on this figure, this percentage decrease with
the Reynolds number and is clearly not negligible.

5. Assessment of the macroscopic model

5.1. Channel flow

In order to assess the macroscopic turbulence model, we
study first the decay of turbulence inside a channel of
length 5Dh at ReH = 105, from both microscopic and mac-
roscopic points of view. This problem is two-dimensional,
since there is no dependency in the spanwise direction. At
the microscopic scale, the flow is computed using the stan-
dard k–� model. Then the microscopic results for turbu-
lence quantities are integrated over the section of the
channel, to obtain the decay of turbulence. The grid size
in the normal direction is still chosen such that the first
velocity node is at a distance y+ = 40 from the wall (we
use wall functions on the solid walls). The size of the mesh
is quite small for that Reynolds number: 100 · 62. At the
macroscopic scale, the macroscopic turbulence model
equations proposed here are solved. Symmetry conditions
are used for the upper and lower boundaries, since the
averaging of the no-slip condition at the wall leads to a
symmetry condition. In the normal direction, only one
node is taken, since the problem reduces to a one-dimen-
sional problem, and in the streamwise direction, we set
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and (b) dissipation rate of turbulent kinetic energy.
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Dx = Dh/20 to have a sufficient resolution for the first
points, however, it is possible to consider larger Dx. For
both calculations, the inlet turbulence kinetic energy and
its dissipation rate are set to hkif = 8k1 and h�if = 15�1.
In both macroscopic and microscopic computations, the
grid-independence of the solutions was checked. Fig. 7(a)
and (b) shows the decay predicted by the present macro-
scopic model along with the intrinsically averaged values
obtained with the microscopic computation. Good agree-
ment between the two sets of results gives support to the
present model. In particular, the use of correlations
obtained at equilibrium, out of equilibrium seems to be
valid since a good prediction of the decay of turbulence
is obtained.

5.2. Bundle of rods (AGATE)

We also compare our model with the results of a decay-
ing turbulence experiment AGATE [12] at ReH = 8.7 · 104.
The experiment consists of a bundle of 25 rods (5 · 5)
inside a cylinder of square section with a spacer grid at
the entrance (Fig. 8). The grid generates turbulence at the
entrance. Behind the grid the turbulence decays and
reaches an asymptotic nonnull value due to the turbulence
production by the rods. The main flow is longitudinal. The
velocities and their fluctuations are measured in the section
at several locations downstream the grid. The microscopic
results of turbulence quantities are integrated over the fluid
section to obtain the level of turbulence. The experiment
only gives access to the values of the turbulent kinetic
energy, and not to the dissipation rate.

Then, we look at the experiment from a macroscopic
point of view. The porosity is given by the ratio between
the fluid section and the total section of the experiment:
/ = 0.594. The value of the hydraulic diameter is computed
from the geometry Dh = 0.01028 m, and the value of the
longitudinal friction coefficient Cf is given by empirical cor-
relations [17] for this rod bundle geometry. The macro-
scopic turbulence model equations proposed here is
solved. Symmetry conditions are used for the upper and
lower boundaries, and for the lateral boundaries. In the
normal and spanwise directions, only one node is taken,
since the problem reduces to a one-dimensional problem.
In the streamwise direction we take 50 nodes to ensure a
sufficient resolution. The computation is started at a dis-
tance of x/Dh = 2 downstream the grid where is situated
the first experimental measurement point. The results of
Spacer grid

Longitudinal Section Transverse
Section

Flow Direction

Fig. 8. Geometry of the AGATE experiment.
hkif and an estimation of h�if obtained from the experiment
are used as inlet conditions. The estimation of h�if is
obtained using Eq. (16) and the two first experimental
values of hkif. The value for cp is obtained from the exper-
imental measurements far away from the grid, in the region
where the flow is established: cp = 0.0368. This is a value
very close to the one obtain for flows inside pipes. Since
we do not have access to the dissipation rate, the value
of yþlim is unknown. We choose the value which gives the
best result: yþlim ¼ 16, which is still in the estimated range
[5–30]. Fig. 9 shows the decay predicted by the present
macroscopic model along with the intrinsically averaged
values of the experiment. Results are presented in a dimen-
sionless form. hkif at the equilibrium is the reference value
for the macroscopic turbulent kinetic energy, and Dh is the
reference for the distance. The good agreement between the
two sets of results gives support to our model.

The value of yþlim that gives the right solution for this
study is greater than the value recommended for pipe or
channel flows. It could be explained either by a stronger
direct dissipation in tube bundles than in pipes, or by the
strong mean velocity gradients induced by the grid inside
the core flow which create a strong direct dissipation that
is not taken into account by our model (with our model,
we only evaluate the dissipation due to the walls). We do
not know which phenomena is predominant since we do
not have any estimation of the dissipation rate inside the
experiment. A microscopic calculation of the experiment
could be undertaken to get an insight, however it is not
in the scope of this article.

Note: With these two test cases, it is impossible to check
the assumption made for the macroscopic turbulent viscos-
ity (15). Indeed, the macroscopic turbulent viscosity only
appears in diffusion terms in the macroscopic set of Eqs.
(14), (16) and (17), and these diffusion terms are always
negligible in the selected test cases. Another test case
should be chosen to check this assumption if the user wants
to use the model when macroscopic diffusion is not negligi-
ble. The same remark can be made for the macroscopic tur-
bulent Prandtl numbers appearing in Eqs. (16) and (17).
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Fig. 9. Decay of turbulent kinetic energy.
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6. Conclusion

In the literature, a macroscopic two-equation turbulence
model obtained applying the volume-averaging theory to
the microscopic two-equation turbulence model is pro-
posed. The additional turbulent source terms appearing
as an output of the averaging process are production terms
of turbulent kinetic energy and its dissipation rate, and give
account of the effect of the solids inside the flow, in the inte-
gration domain. These additional turbulent source terms
have been modeled using the assumption that correlations
obtained at equilibrium (uniform flows) are still valid out
of equilibrium. The form of the dissipation turbulent
source term has also been discussed. This study focus on
longitudinal flows in arrays of channels, pipes or needles.
The correlations have been established for longitudinal
flows using the kinetic energy balance, an estimation of
the direct viscous dissipation and by introducing an ad
hoc length scale. The two unknown constants of this model
have been determined using both numerical and experi-
mental results. Thus, the model is valid for uniform fully
developed flows at equilibrium in pipes and channels.
The model has been also successfully evaluated against
two sets of data of decreasing turbulence: a channel flow
(3D calculation) and a rod bundle flow (experiment). Fur-
ther investigation is needed to find out if the macroscopic
models developed for transverse flows (square and circular
rods) and longitudinal flows (channel, pipe and rod bundle
flows) can be gathered in a unified model that could deal
with any kind of porous media morphology.
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